425: ANALISIS ACCELARATED LEARNING PADA BACKPROPAGATION DALAM PERAMALAN INDEKS HARGA SAHAM GABUNGAN

Cover Jurnal Mudira Indure

ANALISIS ACCELARATED LEARNING PADA BACKPROPAGATION DALAM PERAMALAN INDEKS HARGA SAHAM GABUNGAN

Oleh : Sahat Tigor Panjaitan, SE., M.Si
Dosen Tetap STIE Indonesia Medan

ABSTRAK

Peramalan saham merupakan hal yang sangat dibutuhkan investor saham dalam menentukan kapan harus menjual dan membeli suatu indeks saham. Banyak teori metematis yang telah digunakan untuk mendapatkan hasil peramalan yang tepat tetapi system peramalan yang sering digunakan masih statis. Untuk kasus yang nilainya dinamis, sangatlah sulit dalam pengembangan model matematisnya. Sesuai dengan perkembangan teknologi komputer, penerapan metode Artificial Neural Network menjadi lebih mudah dalam memodelkan system dinamis. Resilient Backpropagation adalah salah satu model Artificial Neural Network (ANN) yang telah diimplementasikan untuk peramalan indeks saham. Risilient Backpropagation mempunyai kemampuan untuk melakukan pembelajaran dan meramalkan data keluaran pada waktu mendatang berdasarkan hasil pembelajaran yang telah dilakukan. Pada penelitian ini, metode ANN akan diterapkan untuk meramalkan harga Open, High, Low dan Close dalam indeks saham Bursa Efek Indonesia. Dengan data berupa harga saham harian, jaringan syaraf tiruan yang dirancang akan menghasilkan bobot-bobot yang digunakan untuk meramal harga saham di hari berikutnya. Dalam penelitian ini, dapat disimpulkan jaringan yang menggunakan variabel input harga opening, high, low dan close dan variabel output open, high, low dan close dengan menggunakan dua (2) hidden layer dengan jumlah node hidden layer1 100 dan jumlah node hidden layer2 150 menghasilkan keakuratan peramalan yang paling baik. Penelitian ini masih dalam tahap awal, dimana masih banyak faktor yang dapat dikembangkan atau diteliti lebih lanjut.

Kata Kunci : Resilient Backpropagation, Peramalan, Saham.

6

Leave a Reply

Your email address will not be published. Required fields are marked *

*